Prove the quadratic formula for ax^2 + bx + c = 0, where a is non 0 and a,b and c are reals.

By completing the square: ax^2 + bx + c = 0 => x^2 + (bx)/a + c/a = 0 (divide both side by a, since a is non-zero) => (x + b/(2a))^2 + c/a - (b/(2a))^2 = 0 (If this is not immediately clear, try expanding it to obtain line above) => (x + b/(2a))^2 = (b^2 - 4ac)/(2a)^2 => x+ b/(2a) = ±(b^2 - 4ac)^(1/2)/(2a) (square root both side introduce ± signs) => x = (-b ± (b^2 - 4ac)^(1/2))/(2a)

SN
Answered by ShenZhen N. Maths tutor

9460 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to solve the simultaneous equations of 3x + 2y = 9 and x-y = 3


Expand and simplify: (x+7)(x+3)


Rob has a bag with white, black and blue counters. There are twice as many blue counters than there are white. A qaurter of all the counters are black. If there are 5 white counters, how many counters are in the bag.


solve the simultaneous equations 8x + 2y = 48 , 14x + 6y = 94


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning