Prove the quadratic formula for ax^2 + bx + c = 0, where a is non 0 and a,b and c are reals.

By completing the square: ax^2 + bx + c = 0 => x^2 + (bx)/a + c/a = 0 (divide both side by a, since a is non-zero) => (x + b/(2a))^2 + c/a - (b/(2a))^2 = 0 (If this is not immediately clear, try expanding it to obtain line above) => (x + b/(2a))^2 = (b^2 - 4ac)/(2a)^2 => x+ b/(2a) = ±(b^2 - 4ac)^(1/2)/(2a) (square root both side introduce ± signs) => x = (-b ± (b^2 - 4ac)^(1/2))/(2a)

SN
Answered by ShenZhen N. Maths tutor

8806 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Make x the subject of the formula: y=(x+5w/2)^0.5


Jules buys a washing machine. 20% VAT is added to the price of the washing machine. Jules then has to pay a total of £600 What is the price of the washing machine with no VAT added?


Write 2x^2 - 16x + 6 in the form a(x + b)^2 + c where a, b and c are constants to be determined.


Find the point of intersection between the lines 2y=-4x+4 and 3y=10x-3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences