Given that y = x^4 + x^(1/3) + 3, find dy/dx

We use the rule that if y = x^n then dy/dx = n*x^(n-1) which is valid whether or not n is an integer. 

We also use that differentiation is a linear operation, which means that we can differentiate term by term in the expression for y.

Noting that 3 = 3*x^0, we therefore have

dy/dx = 4*x^3 + (1/3)*x^(-2/3) + 0

KS
Answered by Karan S. Maths tutor

14222 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By first proving that sin2θ=2sinθcosθ, calculate ∫1+sinθcosθ dθ.


Express the polynomial x^3+x^2-14x-24 as a product of three linear factors.


How does the product rule for differentiation work


Find a solution for the differential equation dy/dx=exp(-y)*sin2x which passes through the origin.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning