Given that y = x^4 + x^(1/3) + 3, find dy/dx

We use the rule that if y = x^n then dy/dx = n*x^(n-1) which is valid whether or not n is an integer. 

We also use that differentiation is a linear operation, which means that we can differentiate term by term in the expression for y.

Noting that 3 = 3*x^0, we therefore have

dy/dx = 4*x^3 + (1/3)*x^(-2/3) + 0

KS
Answered by Karan S. Maths tutor

14437 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why do we have to use radians instead of degrees?


Integrate the function x(2x+5)^0.5


Where does the circle (x-6)^2+(y-7)^2=4 intersect with y=x+3


Find the integral on ln(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning