Given that y = x^4 + x^(1/3) + 3, find dy/dx

We use the rule that if y = x^n then dy/dx = n*x^(n-1) which is valid whether or not n is an integer. 

We also use that differentiation is a linear operation, which means that we can differentiate term by term in the expression for y.

Noting that 3 = 3*x^0, we therefore have

dy/dx = 4*x^3 + (1/3)*x^(-2/3) + 0

KS
Answered by Karan S. Maths tutor

14948 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

1. The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) d d y x (ii) d d 2 y x 2 (3) (b) Verify that C has a stationary point when x = 2 (2) (c) Determine the nature of this stationary point, giving a reason for your answer.


Derive the quadratic formula (Hint: complete the square)


Solve, giving your answer to 3 s.f. : 2^(2x) - 6(2^(x) ) + 5 = 0


State the conditions under which a binomial distribution can be approximated as a normal distribution, and state how the parameters needed would be calculated.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning