How do I multiply complex numbers?

A complex number has the form a+bi. We call a the 'real' bit (ie. the bit on a regular number line) and b is the 'imaginary bit. 
Multiplying complex numbers is done in a very similar way to multiplying out brackets. However, you need to remember that i2 = -1.
For example: what is (6+i) x (5+2i)?
We multiply out the brackets, and get: 6x5 + 6x2i + ix5 +ix2i
This gives 30 + 12i + 5i - 2 (because i2=-1).
Collecting like terms we get 28+17i which is our answer.

CB
Answered by Chloe B. Maths tutor

5466 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has parametric equations x = 1 - cos(t), y = sin(t)sin(2t) for 0 <= t <= pi. Find the coordinates where the curve meets the x-axis.


How do changes to the coefficient of x affect the graph y = f(x) as opposed to changes to the coefficient of f(x)?


Find the gradient of the curve y=2sinx/x^3 at the point x=


Find the exact solution to ln(2y+5) = 2 + ln(4-y)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning