How do I find the maximum/minimum of a curve?

To find the maximum/minimum of a curve you must first differentiate the function and then equate it to zero. This gives you one coordinate. To find the other you must resubstitute the one already found into the original function. To determine whether the point on the curve is a maximum or minimum differentiate to the second order and substitute a coordinate in. If the value is positive it is a minimum point & vice versa.

Example: Find the coordinates of the maximum of the curve y=6x1/2-x-3 

y=6x1/2​-x-3 

dy/dx=3x-1/2 -1  d2y/dx2=-3/2x-3/2

3x1/2 ​-1=0 

x=9 therefore y=6

Sub x=6 into  d2y/dxto give -1/18 so its a maximum point with coordinates (9,6)

KL
Answered by Kishen L. Maths tutor

129864 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Q15 from Senior Mathematical Challenge 2018: A square is inscribed in a circle of radius 1. An isosceles triangle is inscribed in the square. What is the ratio of the area of this triangle to the area of the shaded region? (Requires Diagram))


What is the chain rule?


C1 - Simplifying a fraction that has a root on the denominator


Given that y = x^2 +2x + 3, find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning