How do I find the maximum/minimum of a curve?

To find the maximum/minimum of a curve you must first differentiate the function and then equate it to zero. This gives you one coordinate. To find the other you must resubstitute the one already found into the original function. To determine whether the point on the curve is a maximum or minimum differentiate to the second order and substitute a coordinate in. If the value is positive it is a minimum point & vice versa.

Example: Find the coordinates of the maximum of the curve y=6x1/2-x-3 

y=6x1/2​-x-3 

dy/dx=3x-1/2 -1  d2y/dx2=-3/2x-3/2

3x1/2 ​-1=0 

x=9 therefore y=6

Sub x=6 into  d2y/dxto give -1/18 so its a maximum point with coordinates (9,6)

KL
Answered by Kishen L. Maths tutor

127553 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the cubic function f(x) = x^3 - 7x - 6 has a root x = -1 and hence factorise it fully.


What is the derrivative (dy/dx) of the equation 2 = cos 4x - cos 2y in terms of x and y?


Solve the equation 3 sin^2 theta = 4 cos theta − 1 for 0 ≤ theta ≤ 360


Express 4sinx-cos(pi/2 - x) as a single trignometric function


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning