How do I find the maximum/minimum of a curve?

To find the maximum/minimum of a curve you must first differentiate the function and then equate it to zero. This gives you one coordinate. To find the other you must resubstitute the one already found into the original function. To determine whether the point on the curve is a maximum or minimum differentiate to the second order and substitute a coordinate in. If the value is positive it is a minimum point & vice versa.

Example: Find the coordinates of the maximum of the curve y=6x1/2-x-3 

y=6x1/2​-x-3 

dy/dx=3x-1/2 -1  d2y/dx2=-3/2x-3/2

3x1/2 ​-1=0 

x=9 therefore y=6

Sub x=6 into  d2y/dxto give -1/18 so its a maximum point with coordinates (9,6)

KL
Answered by Kishen L. Maths tutor

121909 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation 16*y^3 + 9*x^2*y - 54*x = 0 a)Find dy/dx in terms of x and y


Exponential Growth Equations


How to differentiate a bracket raised to a power i.e. chain rule


Differentiate the function y = (x^2)/(3x-1) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences