Given log3(3b + 1) - log3(a-2) = -1 for a > 2. Express b in terms of a.

We can start by recognising one of our properties of log. That is loga(x) - loga(y) = loga(x/y). Performing this on our question we get: log3((3b+1)/(a-2)) = -1. Now we can remove our log and rewrite our equation as follows: (3b+1)/(a-2) = 3-1 implying that (3b+1) = (a-2)/3 implying that 3b = (a-2)/3 - 1 or better, inserting the -1 into our fraction and getting (a-5)/3. Finally implying that b = (a-5)/9.

JW
Answered by Jason W. Maths tutor

14627 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has equation y = 3x^4 - 8x^3 - 3. Find dy/dx and d2y/dx2. Verify C has a stationary point at x = 2. Determine the nature of this stationary point, giving a reason for the answer.


let y=6x^-0.5+2x+1, find dy/dx.


(a) Use integration by parts to find ∫ x sin(3x) dx


Express 6sin(2x)+5cos(x) in the form Rsin(x+a) (0degrees<x<90degrees)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences