Given log3(3b + 1) - log3(a-2) = -1 for a > 2. Express b in terms of a.

We can start by recognising one of our properties of log. That is loga(x) - loga(y) = loga(x/y). Performing this on our question we get: log3((3b+1)/(a-2)) = -1. Now we can remove our log and rewrite our equation as follows: (3b+1)/(a-2) = 3-1 implying that (3b+1) = (a-2)/3 implying that 3b = (a-2)/3 - 1 or better, inserting the -1 into our fraction and getting (a-5)/3. Finally implying that b = (a-5)/9.

JW
Answered by Jason W. Maths tutor

15495 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How come x^2 = 25 has 2 solutions but x=root(25) only has one? Aren't they the same thing?


Given that: 2tanθsinθ = 4 - 3cosθ , show that: 0 = cos²θ - 4cosθ + 2 .


How do you show that (x+2) is a factor of f(x) = x^3 - 19x - 30, and then factorise f(x) completely?


A curve has the equation y=sin(x)cos(x), find the gradient of this curve when x = pi. (4 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning