Given log3(3b + 1) - log3(a-2) = -1 for a > 2. Express b in terms of a.

We can start by recognising one of our properties of log. That is loga(x) - loga(y) = loga(x/y). Performing this on our question we get: log3((3b+1)/(a-2)) = -1. Now we can remove our log and rewrite our equation as follows: (3b+1)/(a-2) = 3-1 implying that (3b+1) = (a-2)/3 implying that 3b = (a-2)/3 - 1 or better, inserting the -1 into our fraction and getting (a-5)/3. Finally implying that b = (a-5)/9.

JW
Answered by Jason W. Maths tutor

15095 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I demonstrate that (sin(T)+cos(T))(1-sin(T)cos(T))=(sin(T))^3+(cos(T))^3


Given that y = exp(2x) * (x^2 +1)^(5/2), what is dy/dx when x is 0?


Integrate (x^3 - x^2 - 5x + 7) with respect to x.


Find the equation of the tangent to the curve y = (5x+4)/(3x-8) at the point (2, -7).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning