Solve the following equation by completing the square: x^2 + 6x + 3 = 0.

Completing the square is a method of solving quadratic equations that cannot be easily factorised, without having to use the quadratic formula. The first step is to look at the coefficient of the second term: in the above question, this is 6. We then halve the coefficient, i.e. 3. We can then add this to x and square the whole term, as below:

We have (x + 3)2. This equals x2 + 6x + 9.
So we have the right x2 and x terms, but not the right constant.
To make this equal the above equation, we need to subtract 6 and equate to 0. So:
x2 + 6x + 3 = (x + 3)2 - 6 = 0.
We have completed the square!

We can then solve the equation
(x + 3)2 - 6 = 0
(x + 3)2 = 6
x + 3 = +/- rt(6)
x = -3 +/- rt(6)

EC
Answered by Emma C. Maths tutor

23110 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find dy/dx of x^1/2 + 4/(x^1/2) + 4


1. (a) Express 7cosx - 24sin x in the form R cos (x + a), (b) hence what is the minimum value of this equation


How would you differentiate ln(sin(3x))?


A curve has the equation y = (x^2 - 5)e^(x^2). Find the x-coordinates of the stationary points of the curve.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences