Solve the following equation by completing the square: x^2 + 6x + 3 = 0.

Completing the square is a method of solving quadratic equations that cannot be easily factorised, without having to use the quadratic formula. The first step is to look at the coefficient of the second term: in the above question, this is 6. We then halve the coefficient, i.e. 3. We can then add this to x and square the whole term, as below:

We have (x + 3)2. This equals x2 + 6x + 9.
So we have the right x2 and x terms, but not the right constant.
To make this equal the above equation, we need to subtract 6 and equate to 0. So:
x2 + 6x + 3 = (x + 3)2 - 6 = 0.
We have completed the square!

We can then solve the equation
(x + 3)2 - 6 = 0
(x + 3)2 = 6
x + 3 = +/- rt(6)
x = -3 +/- rt(6)

EC
Answered by Emma C. Maths tutor

25562 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equation x+y=11(1), x^2+y^2=61 (2)


Given y = 2x(x2 – 1)5, show that (a) dy/dx = g(x)(x2 – 1)4 where g(x) is a function to be determined. (b) Hence find the set of values of x for which dy/dx > 0


Find the coordinates of the minimum point on the curve: y = x^2 - x - 2


find the derivative of the following equation: a) y = 5x^3 - 4x^-4 + xb


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning