MYTUTOR SUBJECT ANSWERS

1461 views

How do I rationalise the denominator of a fraction which consists of surds?

[Recall: the numerator of a fraction is the top number; the denominator refers to the bottom number. 

A surd is an irrational number, e.g. √3, √5, etc.]

Given the following fraction:

(a+√b)/(c-√b), where a,b and c are non-negative integers and b is not a square number.

We can see that the denominator (c-√b) is irrational. To rationalise the denominator we take the following steps:

1. Multiply BOTH the numerator and the denominator of our fraction by (c+√b) in order to eliminate the irrational surd in the denominator. 

Note: we perform this multiplication to both the numerator and denominator in order to preserve the value of the original fraction .

2. We now have for our numerator: (a+√b)(c+√b), and for our denominator: (c-√b)(c+√b). 

Expand these brackets, thus we obtain the following fraction:

(ac+(a+c)√b+b) / (c- b)

Clearly we have succeeded in rationalising our denominator (whilst still maintaining the value of our original fraction) since (c2-b) is clearly a rational number, as required.

Example:

Write (5+7√3)/(5-3) in the form a+b3, where a and b are rational.

Soln: We carry out the steps stated above;

Multiply numerator and denominator by (5+√3), in doing so eliminating the irrational surd from our denominator. We thus obtain:

{(5+7√3)(5+√3)} / {(5-√3)(5+√3)}  (expand brackets)

=(46+12√3) / (25+5√3-5√3 - 3)

=(46+12√3) / (22)

=23/11+(6/11)√3.

Clearly, from our orginal hypothesis, a=23/11, b=6/11 are both rational numbers, thus we are done.

Liam D. GCSE Maths tutor, A Level Maths tutor

2 years ago

Answered by Liam, an A Level Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

257 SUBJECT SPECIALISTS

£20 /hr

Juris B.

Degree: Computer Science (Bachelors) - St. Andrews University

Subjects offered:Maths, Computing

Maths
Computing

“I am a Computer Science at the University of St. Andrews. Before that however, I was a pupil in a school in the North-East of Scotland. With the combined passion and availability of superb teachers - I was given an opportunity to exce...”

£20 /hr

Madeleine N.

Degree: Maths and Physics (Masters) - Durham University

Subjects offered:Maths, Spanish+ 2 more

Maths
Spanish
Physics
Further Mathematics

“Enthusiastic student, studying Maths and Physics at Durham university: keen to work hard with students to improve their results.”

£22 /hr

Shreya G.

Degree: Biochemistry with molecular medicine (Bachelors) - Nottingham University

Subjects offered:Maths, Biology+ 1 more

Maths
Biology
-Personal Statements-

“I am a first year undergraduate student at The University Of Nottingham, currently studying Biochemistry with molecular medicine. ”

About the author

Liam D.

Currently unavailable: no new students

Degree: Mathematics (Masters) - Queen's, Belfast University

Subjects offered:Maths

Maths

“Second year Mathematics Msc undergraduate. Looking to tutor both GCSE and A-Level Mathematics”

MyTutor guarantee

You may also like...

Posts by Liam

How do I expand brackets by multiplication?

How do I prove that an irrational number is indeed irrational?

How do I rationalise the denominator of a fraction which consists of surds?

Other A Level Maths questions

Solve simultaneously: x + y + 3 = 0 and y = 2x^2 +3x - 1

Differentiate y = (x^2 + 3)^2

The curve C has the equation y = 2x^2 -11x + 13. Find the equation of the tangent to C at the point P (2, -1).

Find the integral I of e^(2x)*cos*(x), with respect to x

View A Level Maths tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok