solve the differential equation dy/dx = 6xy^2 given that y = 1 when x = 2

First step is to seperate the variables (EQ1) : (1/y^2) dy = 6x   Then we integrate each side seperately giving us (EQ2) : -1/y = 3x^2 + C (remembering to add 1 to the power and divide by the new power) subbing in the values for y (1) and x (2) we get - 1 = 12 + C. Therefore C = -13. Subbing this back into EQ2 and rearranging for y we get y = -1/(3x^2  - 13)

DM
Answered by Dylan M. Maths tutor

9423 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When calculating a question with a double integral question between two different ranges which range relates to which integration variable.


Find the coordinate of the stationary point on the curve y = 2x^2 + 4x - 5.


differentiate x^2 + 7x + 4


How come x^2 = 25 has 2 solutions but x=root(25) only has one? Aren't they the same thing?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences