Explain how Differentiation by the chain rule works

If the expression to be differentiated is a (differentiable) function of another (differentiable) function, then the chain rule must be applied. For example y= f(g(x)), where f and g are both differentiable, then dy/dx = f'(g(x)).g'(x). To simplify this, it can be looked at as a simple substitution:
Let g(x)=u, then, the chain rule states that, dy/dx=(du/dx).(dy/du). For example, should the expression to be differentiated be (cos(x))^2, then let u=cosx, du/dx = -sin(x), y=u^2, dy/du=2u, therefore dy/dx = -sin(x).2(cos(x)).

GO
Answered by Gwyndaf O. Maths tutor

3964 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that f(x) = 1/x - sqrt(x) + 3. Find f'(1).


A line has equation y = 2x + c and a curve has equation y = 8 − 2x − x^2, if c=11 find area between the curves


Differentiate the following with respect to x: e^(10x) + ln(6x+2)


Use the substitution u=x^2-2 to find the integral of (6x^3+4x)/sqrt( x^2-2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning