In one experiment, the temperature of 50 g of water increased from 22.0 °C to 38.4 °C. The mass of alcohol burned was 0.8 g. Calculate the heat energy (Q) in joules, released by burning 0.8 g of the alcohol.

Key Equation: Q = mcΔT Where: Q = heat transferred (J), m = mass of substance which is heated (g), c = heat capacity of water (J g-1 °C -1) and ΔT = temperature change for heated substance (°C) . c = 4.2 J g-1 °C -1 Heat energy is transferred to the water because alcohol burning releases heat. Hence, 'm' = the mass of the water heated. ΔT = 38.4 °C - 22.0 °C = 16.4 °C Substitute values into the Key Equation. I would recommend always including units in calculations, it will help us avoid errors. Q =  50 g x 4.2 J g-1 °C -1 x 16.4 °C = 3444 J 

DB
Answered by David B. Chemistry tutor

11465 Views

See similar Chemistry GCSE tutors

Related Chemistry GCSE answers

All answers ▸

What elements make up the halides?


Describe an atom in terms of its sub-atomic particles and their relative mass, relative charge and its location


Write a word equation for the reaction between lithium bromide and chlorine gas.


Describe one chemical test and one physical test for pure water.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences