Given that y = (( 4x + 1 )^3)sin(2x), find dy/dx.

This is an example of the chain rule.

The chain rule is the following: if y = uv, then dy/dx = udv/dx + vdu/dx

So in this case, u = ( 4x + 1)^3, v = sin(2x)

du/dx = (3)(4)( 4x + 1 )^2, dv/dx = 2cos(2x)

dy/dx = (12( 4x + 1)^2)sin(2x) + 2(( 4x + 1)^3)cos(2x)

DS
Answered by Danielle S. Maths tutor

5207 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the equation of the curve that has gradient dy/dx=(4x-5) and passes through the point (3,7)?


A circle with centre C has equation x^2+8x+y^2-12y=12. The points P and Q lie on the circle. The origin is the midpoint of the chord PQ. Show that PQ has length nsqrt(3) , where n is an integer.


Solve x^2=3(x-1)^2


solve dy/dx = y(sec x)^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning