Solve the inequality x(x+2)>8 for x.

x(x+2)>8 if and only if x^2+2x-8>0 if and only if (x+4)(x-2)>0. There are three cases: x<-4, -4 In the first case x+4<0 and x-2<0, so their product is positive: (x+4)(x-2)>0. Next x+4>0 and x-2<0, so their product is negative: (x+4)(x-2)>0. Finally x+4>0 and x-2>0, so their product is positive: (x+4)(x-2)>0. Hence the solutions are in the first and third cases when x<-4 or 2

JT
Answered by Joshua T. Maths tutor

4327 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: y=x+1, x^2+y^2=13


How do I differentiate something in the form f(x)/g(x)?


Find the stationary point(s) of the curve: y = 3x^4 - 8x^3 - 3.


Differentiate (4x+9)^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning