Solve the simultaneous equations: 4x+5y = 38 , x-y = 5

Firstly number the two equations 1 and 2 for simplicity. To solve this we want to eliminate one of the variables, x or y, so we start by looking at the equations and seeing if we can add or subtract them from each other to get rid of one of the variables. From these equations it doesnt look like we can do this immediately. What we do now is multiply equation two (x-y=5) by 5, to get our new equation three : 5x-5y =25. REMEMBER to multiply the right hand side as well... Now we see we can add equation three to eqaution one and this removes y...we are left with 9x =63. Divide by 9 to get x=7. Now plug x = 7 into one of the original equations, for simplicity use equation two. And this gives us y=2

AA
Answered by Ali A. Maths tutor

4274 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What actually IS 'differentiation'?


Express 216 as a product of its prime factors.


Solve the simultaneous equations: y = x + 6, x^2 + 2y = 9


The mean mass of a squad of 19 hockey players is 82 kg A player of mass 93 kg joins the squad. Work out the mean mass of the squad now.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences