Solve the simultaneous equations: 4x+5y = 38 , x-y = 5

Firstly number the two equations 1 and 2 for simplicity. To solve this we want to eliminate one of the variables, x or y, so we start by looking at the equations and seeing if we can add or subtract them from each other to get rid of one of the variables. From these equations it doesnt look like we can do this immediately. What we do now is multiply equation two (x-y=5) by 5, to get our new equation three : 5x-5y =25. REMEMBER to multiply the right hand side as well... Now we see we can add equation three to eqaution one and this removes y...we are left with 9x =63. Divide by 9 to get x=7. Now plug x = 7 into one of the original equations, for simplicity use equation two. And this gives us y=2

AA
Answered by Ali A. Maths tutor

4622 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Make a the subject of the formula p = (3a + 5)/ (4 - a)


Expand 5a(a+3b)


A rectangular frame is made from 5 straight pieces of metal with height 5m and length 12m. One of the pieces of metal goes through the diagonal of the rectangle. The weight of the metal is 1.5 kg per metre. Work out the total weight of the metal


How do you make f the subject of the following a = c/d + e/f


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning