Find the tangent for the line y=x^3+3x^2+4x+2 at x=2

Firstly, differentiate the equation y=x3+3x2+4x+2 to find the gradient function. The gradient function is dy/dx and is found to be 3x2+6x+4 = f'(x) after differentiation. The simple rule is to multiply the term by the power of x, and then subtract one from the power to differentiate each term. Also you should remember to remove the constant when differentiating (in this case "2") because the power of x is 0 and multiplying a term by 0 gives 0. Then, to find the gradient at the point x=2, simply put the number 2 into the gradient function to find the gradient. So, the gradient m=f'(2) = 28. To find the tangent, first find the y coordinate where x=2 by substituting this into the original equation (the first equation). This is found to be 30. So the coordinates are (2,30) of where the tangent will cross. Now, apply the equation y-y1=m(x-x1), where (x1,y1) are the coordinates of the tangent. The equation looks like this: y-30=2(x-28) This turns out to be, after rearranging, y=2x-26.

WC
Answered by Wafi C. Maths tutor

5272 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate z = e^(3y^2+5) with respect to y. (Hint: use chain rule.)


Solve for 0<x≤2π, cos^2(x)-3cos(x)=5sin^2(x)-2, giving all answers exactly


AQA PC4 2015 Q5 // A) Find the gradient at P. B) Find the equation of the normal to the curve at P C)The normal P intersects at the curve again at the point Q(cos2q, sin q) Hence find the x-coordinate of Q.


how to integrate by parts


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning