Solve: a) 5t + 17 = 2 b) x^3 - 25 = 103 - x^3

a) Solving for t:
We isolate our unknown t on one side, to leave the factors of t on one side and the numbers on the other:
-1st step: substract 17 from both sides --> 5t = -15
-2nd step: divide by 5 on both sides --> t = -3

b) Solving for x: We now isolate the power of x on one side:
-1st step: add x^3 on both sides --> 2*(x^3)-25=103

-2nd step: add 25 on both sides --> 2*(x^3) = 128

-3rd step: divide by two on both sides --> x^3 = 64

  • Finally to get rid of the exponent, we take the cube root on both sides of the expression --> x = 4
LC
Answered by Luis C. Maths tutor

3748 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of the regression line of y (retail price, £) on x (number of pages) for a set of books is y = 0.02x + 1.35. How can I use this equation?


Find the roots for the quadratic equation x^2 +2x-3 = 0


In a right-angled triangle calculate the length of the hypotenuse when the side lengths at 5cm and 7cm. Leave your answer as a surd.


Expand and simplify (5a-2b)(3a-4b)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning