Calculate the value of both x and y using the following 2 equations: 3x - 2y = 12 (1) and x - y = 3 (2)

Process of elimination:

Multiply equation 2 by 3 to get the same coefficent in front of x:  3x - 3y = 9  (3)

Subtract eq 3 from eq 1 to get:  y = 3

Substitutute our value for y into eq 2 for simplicity: x - 3 = 3  therefore x = 6

Process of substitution: Add y to the right hand side of equation 2 to get: x = 3 + y

Substitute this expression of x into equation 1 to eliminate x:  3(3+y) - 2y = 12 

Expand and simplify: 9 + y = 12 therefore y = 3

Substitute this value of y into equation 2 and solve for x: x - 3 = 3 so x = 6

HM
Answered by Hamza M. Maths tutor

8752 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Starting with x^2+2x+1=0 use the method of factorising to solve for x.


For a cuboid, the longest side is two units more than the shortest side, and the middle length side is one unit longer than the shortest side. The total surface area of the cuboid is 52 units². (a) Construct an equation to calculate the surface area.


A right angle triangle has a base of √8 and a height of (√10+3). Show that the area is equal to 2√5+3√2.


Solve the simultaneous equations: 5x+5y = 6 7x+3y = 6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning