Calculate the value of both x and y using the following 2 equations: 3x - 2y = 12 (1) and x - y = 3 (2)

Process of elimination:

Multiply equation 2 by 3 to get the same coefficent in front of x:  3x - 3y = 9  (3)

Subtract eq 3 from eq 1 to get:  y = 3

Substitutute our value for y into eq 2 for simplicity: x - 3 = 3  therefore x = 6

Process of substitution: Add y to the right hand side of equation 2 to get: x = 3 + y

Substitute this expression of x into equation 1 to eliminate x:  3(3+y) - 2y = 12 

Expand and simplify: 9 + y = 12 therefore y = 3

Substitute this value of y into equation 2 and solve for x: x - 3 = 3 so x = 6

HM
Answered by Hamza M. Maths tutor

8181 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to derive the formula for a geometric series sum


Find the equation of the line passing through the point ( 2, −3) which is parallel to the line with equation y + 4x = 7


ABCD is a rhombus on a graph. B(7,10). AC: y=7-4x. Find an equation for DB in the form tx+py+r=0 where t,p&r are integers.


The first 4 terms of a different sequence are: 9, 13, 17, 21. Find an expression for the nth term of the sequence


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences