Calculate the value of both x and y using the following 2 equations: 3x - 2y = 12 (1) and x - y = 3 (2)

Process of elimination:

Multiply equation 2 by 3 to get the same coefficent in front of x:  3x - 3y = 9  (3)

Subtract eq 3 from eq 1 to get:  y = 3

Substitutute our value for y into eq 2 for simplicity: x - 3 = 3  therefore x = 6

Process of substitution: Add y to the right hand side of equation 2 to get: x = 3 + y

Substitute this expression of x into equation 1 to eliminate x:  3(3+y) - 2y = 12 

Expand and simplify: 9 + y = 12 therefore y = 3

Substitute this value of y into equation 2 and solve for x: x - 3 = 3 so x = 6

HM
Answered by Hamza M. Maths tutor

8284 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A rectangle has an area of 20cm^2. Its length and width are enlarged by a factor of 3. Find the area of the enlarged rectangle.


Solve algebraically the simultaneous equations x^2 + y^2 = 25, y – 3x = 13


If a line t (f(x) = 2x +3) is perpendicular to a line n that passes through point (3,7), what is the equation of line n?


A trader buys 6 watches at £25 each. He scratches one of them, so he sells that one for £11. He sells the other 5 for £38 each. Find his profit as a percentage.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences