Find the value of x in (4^5⋅x+32^2)⋅2^5=2^16⋅x

Find the value of x in (45x+322)⋅25=216x

First we transform everything into powers of 2 as all the numbers involved in this equation are multiples of 2.

||    45 = (22)5 = 22*5= 210

||    32= (25)2 = 22*5= 210
dividing over 25 on both sides and putting the powers of 2 we get
210 x + 210 = 211x ------ 216/25 = 216-5 = 211

we factorise on the left hand side of the equation

210(x+1) = 211 x --------- we divide over 210

x+1 = 2x -------- 211/210 = 211-10 = 2

Take away x on both sides -----> x =1

LC
Answered by Luis C. Maths tutor

7163 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the following fraction w.r.t. x: (sqrt(x^2 + 1)-sqrt(x^2 - 1))/(sqrt(x^4 - 1))


Given that (2x-1) : (x-4) = (16x+1) : (2x-1), find the possible values of x


Make a the subject of 3(a+4) = ac+5f


Why does the chain rule work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning