What is Mathematical Induction?

Mathematical induction is a type of direct proof, where you can prove sequences or series. A good example of this is that we can prove 1 + 3 + 5 + .... + (2n-1) = n^2. There are 4 steps: 1. Prove the first case, or the n=1 case for this example. 2. Assume that the k-th case is true for any positive integer number k. 3. Using the assumption, prove that the (k+1)-th case. For this example we take n = k+1. 4. So we've just proved that if the k-th case is true then the (k+1)-th case must be true! So if the 1st case is true, then the 2nd case must be true. Then since the 2nd case is true, so must the 3rd case. This logic carries on and therefore we have proved what we wanted to prove for all integers!

AH
Answered by Ayesha H. Maths tutor

4088 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider the functions f and g where f (x) = 3x − 5 and g (x) = x − 2 . (a) Find the inverse function, f^−1 . (b) Given that g^−1(x) = x + 2 , find (g^−1 o f )(x) . (c) Given also that (f^−1 o g)(x) = (x + 3)/3 , solve (f^−1 o g)(x) = (g^−1 o f)(x)


Find the equation of the tangent to the curve y = x^2-2x-3 at x=-1


The curve with the equation: y=x^2 - 32sqrt(x) + 20 has a stationary point P. Find the coordinates of P.


How do you factorise a quadratic equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning