Show that the cubic function f(x) = x^3 - 7x - 6 has a root x = -1 and hence factorise it fully.

f(-1) = (-1)^3 - (-1)*7 - 6 = -1 + 7 - 6 = 0

Hence f(x) = (x+1)(x^2 + ax - 6)

Expand this out

f(x) = x^3 + ax^2 - 6x + x^2 + ax - 6 

      = x^3 + (a+1)x^2 + (a-6)x -6

By comparing co-efficients

a + 1 = 0

a - 6 = -7

a = -1

Thus 

f(x) = (x + 1)(x^2 - x - 6)

      = (x + 1)(x - 3)(x + 2)

JB
Answered by James B. Maths tutor

4172 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the x coordinate of the minimum point of the curve y = e3x - 6e2x + 32.


Differentiate y=e^(x^2+2x)


Prove algebraically that n^3 +3n -1 is odd for all positive integers n


Solve the simultaneous equations: y - 3x + 2 = 0 y^2 - x - 6x^2 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences