Show that the cubic function f(x) = x^3 - 7x - 6 has a root x = -1 and hence factorise it fully.

f(-1) = (-1)^3 - (-1)*7 - 6 = -1 + 7 - 6 = 0

Hence f(x) = (x+1)(x^2 + ax - 6)

Expand this out

f(x) = x^3 + ax^2 - 6x + x^2 + ax - 6 

      = x^3 + (a+1)x^2 + (a-6)x -6

By comparing co-efficients

a + 1 = 0

a - 6 = -7

a = -1

Thus 

f(x) = (x + 1)(x^2 - x - 6)

      = (x + 1)(x - 3)(x + 2)

JB
Answered by James B. Maths tutor

4239 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 2cos(x) + 5sin(x) in the form Rsin(x + a) where 0<a<90


Differentiate with respect to x: y = xln[2x]


if f is defined on with f(x)=x^2-2x-24(x)^0.5 for x>=0 a) find 1st derivative of f, b) find second derivative of f, c) Verify that function f has a stationary point when x = 4 (c) Determine the type stationary point.


At what point(s) do lines y = x^2 - 5x - 14 and y = 3x + 2 intersect? Write your answer in surd form


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning