Express the recurring decimal 0.2131313 as a fraction

  1. Firstly, identify the recurring portion of the decimal. In this case, it is "13"

  2. set up an equation "x=0.2131313

  3. You need to place the repeating section to the left of the decimal point. To do this, you will need to multiply by 1000. Thus, the above equation becomes: 1000x= 213.131313

  4. now, you need to place the repeating portion to the right off the decimal point. To do this, you need to multiply by 10. This gives you: 10X=2.131313

  5. you have 2 simeltaneous equations now. subtract the second one from the first. this gives you: 1000x-10x = 213.131313-2.131313

  6. 990x= 210

  7. X= 210/990

  8. X=21/99

  9. X= 7/33

AN
Answered by Abhijit N. Maths tutor

14758 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the quadratic formula and how do I use it?


How do I solve 3x + y = 11 & 2x + y = 8?


Given a spinner divided in 3 sections numbered 1, 2 and 3, and that the arc of section 2 is double that of section one (~57.6 cm), calculate pi to 2 decimal places. The radius of the spinner is 30cm and the angle sub-intended by section 3 is 30 degrees.


Solve the following quadratic equation.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences