Express the recurring decimal 0.2131313 as a fraction

  1. Firstly, identify the recurring portion of the decimal. In this case, it is "13"

  2. set up an equation "x=0.2131313

  3. You need to place the repeating section to the left of the decimal point. To do this, you will need to multiply by 1000. Thus, the above equation becomes: 1000x= 213.131313

  4. now, you need to place the repeating portion to the right off the decimal point. To do this, you need to multiply by 10. This gives you: 10X=2.131313

  5. you have 2 simeltaneous equations now. subtract the second one from the first. this gives you: 1000x-10x = 213.131313-2.131313

  6. 990x= 210

  7. X= 210/990

  8. X=21/99

  9. X= 7/33

AN
Answered by Abhijit N. Maths tutor

15731 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A bag contains only 8 beads. The beads are identical in all respects except colour. 3 of the beads are black and the other 5 beads are white. A bead is taken at random from the bag and not replaced. A second bead is then taken at random from the bag. What


The first four terms of an arithmetic sequence are : 11, 17, 23, 29. In terms of n, find an expression for the nth term of this sequence.


Solve the simultaneous equations x+y=8 and 3x-y=4.


Solve the following quadratic equation: x^2 + 3x + 2 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning