Express the recurring decimal 0.2131313 as a fraction

  1. Firstly, identify the recurring portion of the decimal. In this case, it is "13"

  2. set up an equation "x=0.2131313

  3. You need to place the repeating section to the left of the decimal point. To do this, you will need to multiply by 1000. Thus, the above equation becomes: 1000x= 213.131313

  4. now, you need to place the repeating portion to the right off the decimal point. To do this, you need to multiply by 10. This gives you: 10X=2.131313

  5. you have 2 simeltaneous equations now. subtract the second one from the first. this gives you: 1000x-10x = 213.131313-2.131313

  6. 990x= 210

  7. X= 210/990

  8. X=21/99

  9. X= 7/33

AN
Answered by Abhijit N. Maths tutor

16430 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Bhavin, Max and Imran share 6000 rupees in the ratios 2 : 3 : 7. Imran then gives 3/5 of his share of the money to Bhavin. What percentage of the 6000 rupees does Bhavin now have? Give your answer correct to the nearest whole number.


prove that any odd number squared is one more than a multiple of four.


What is Pythagoras' Theorem for finding the length of a side of a triangle?


The diameter of a circle is 14cm, work out its area


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning