Express the recurring decimal 0.2131313 as a fraction

  1. Firstly, identify the recurring portion of the decimal. In this case, it is "13"

  2. set up an equation "x=0.2131313

  3. You need to place the repeating section to the left of the decimal point. To do this, you will need to multiply by 1000. Thus, the above equation becomes: 1000x= 213.131313

  4. now, you need to place the repeating portion to the right off the decimal point. To do this, you need to multiply by 10. This gives you: 10X=2.131313

  5. you have 2 simeltaneous equations now. subtract the second one from the first. this gives you: 1000x-10x = 213.131313-2.131313

  6. 990x= 210

  7. X= 210/990

  8. X=21/99

  9. X= 7/33

AN
Answered by Abhijit N. Maths tutor

16513 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do tree diagrams work? Consider: A bag contains 5 red counters and 3 blue counters. James draws a counter from the bag at random and keeps it. James then draws a second counter at random. What is the probability that James takes two red counters?


How do you factorise?


What exactly is pi?


Expand (x+1)(x-4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning