Express the recurring decimal 0.2131313 as a fraction

  1. Firstly, identify the recurring portion of the decimal. In this case, it is "13"

  2. set up an equation "x=0.2131313

  3. You need to place the repeating section to the left of the decimal point. To do this, you will need to multiply by 1000. Thus, the above equation becomes: 1000x= 213.131313

  4. now, you need to place the repeating portion to the right off the decimal point. To do this, you need to multiply by 10. This gives you: 10X=2.131313

  5. you have 2 simeltaneous equations now. subtract the second one from the first. this gives you: 1000x-10x = 213.131313-2.131313

  6. 990x= 210

  7. X= 210/990

  8. X=21/99

  9. X= 7/33

AN
Answered by Abhijit N. Maths tutor

15021 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand (x+3)(x+6)


What is the nth-term of this sequence? 29, 26, 23, 20, 17...


What does it mean to solve an equation for x?


A 20-foot ladder is leaning against a vertical wall. The bottom of the ladder is pulled away horizontally from the wall at 3 feet per second. How fast is the top of the ladder sliding down the wall when the bottom of the ladder is 10 feet away?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences