Solve the simultaneous equations: 5x + 3y = 41 and 2x + 3y = 20 Do not use trial and error.

  1. 5x + 3y = 41   2) 2x + 3y = 20 Subtract equation 2) from equation 1) to cancel the y's (3y-3y = 0) .  Next we subtract  the x's (5x - 2x = 3x) and then finally we have 41 - 20 = 21. We now have that 3x = 21 ( remember both the y's have cancelled) so we can divide both sides by 3 to find that; x = 7
DT
Answered by David T. Maths tutor

18636 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following simultaneous equations: 3x + 5y = 19 and 8x - 2y = -18. If both equations represent lines in a coordinate system, at which point do they intersect?


Solve the simultaneous equations y = 2x-3 and x^2 +y^2 = 2


The Diagram shows the Triangle PQR. PQ = x cm. PR = 2x cm. Angle QP^R = 30 degrees. The area of the triangle PQR = A cm^2. Show that x = (Squared Root){2A


We have a parallelogram with sides of 8cm and 5cm and an angle of 140 degrees, calculate the length of two diagonals


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences