Use the product rule to differentiate y=2xsinx

The product rule states that y=uv and dy/dx=(u)dv/dx + (v)du/dx. As the equation is in this form we can let u=2x and v=sinx. Therefore du/dx=2 and dv/dx=cosx. Substituting for u and v we get dy/dx=(2x)(cosx) + (sinx)(2) so dy/dx=2(xcosx + sinx).

GK
Answered by Georgianna K. Maths tutor

14917 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the general solution, in degrees, of the equation 2 sin(3x+45°)= 1


For a given function F(x), what does the graph of the function F(x+2) look like in comparrison to F(x)?


Find the area under the curve with equation y = 5x - 2x^2 - 2, bounded by the x-axis and the points at which the curve reach the x-axis.


how do you differentiate tan(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning