Use the product rule to differentiate y=2xsinx

The product rule states that y=uv and dy/dx=(u)dv/dx + (v)du/dx. As the equation is in this form we can let u=2x and v=sinx. Therefore du/dx=2 and dv/dx=cosx. Substituting for u and v we get dy/dx=(2x)(cosx) + (sinx)(2) so dy/dx=2(xcosx + sinx).

GK
Answered by Georgianna K. Maths tutor

14188 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch the curve with the equation y=x^2 +4x+4, labelling the points where it crosses or touches the axes.


A circle with centre C has equation x^2+8x+y^2-12y=12. The points P and Q lie on the circle. The origin is the midpoint of the chord PQ. Show that PQ has length nsqrt(3) , where n is an integer.


Differentiate: y = 2 ^ x


Differentiate y=(x^2 + 2x)cos(3x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences