Use the product rule to differentiate y=2xsinx

The product rule states that y=uv and dy/dx=(u)dv/dx + (v)du/dx. As the equation is in this form we can let u=2x and v=sinx. Therefore du/dx=2 and dv/dx=cosx. Substituting for u and v we get dy/dx=(2x)(cosx) + (sinx)(2) so dy/dx=2(xcosx + sinx).

GK
Answered by Georgianna K. Maths tutor

14674 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx of the equation y=x^2 ln⁡(2x^2+1).


Solve sec(x)^2-2*tan(x)=4 for 0<=x<=360


How do you find the maximum/minimum value of an equation?


How do you solve a Differential equation using integrating factors?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning