How do I solve a quadratic equation by factorising?

 A quadratic equation is one that includes xas the highest power of x. Factorising is achieved in 3 steps. Let’s consider the example x2-3x-3=11) Put the equation into the form ax2+bx+c=0x2-3x-4=02) FactoriseWe need two numbers that- add together to get -3- Multiply together to get -4-4x1=-4 and -4+1=-3Thus, factorising gives (x-4)(x+1)=03) Solve the equation!If two numbers are multiplied together to give 0, one of them must be 0. Thus:x-4=0 and x=4x+1=0 and x=-1The equation has been solvedAdditional points:- This technique can be applied to finding the points of intersection on the x axis for a quadratic graph. For example, y=x2-3x-4. At the x axis, y=0 so you can work out x as above.- Harder quadratic equations can also be solved by factorising. For example when a isn't 1. 2x2 + 7x + 3=0Find two numbers that multiply to give 2x3 (6) and add to give 7. In this case, 6 and 1.Split 7x into 6x +x2x2 + 6x+x + 3=0Factorise each part by taking out a common factor. 2x(x+3)+1(x + 3)=0The sames as(2x+1)(x+3)=0thus x = -1/2 or x=-3Practice questions1. Solve by factorisingx2 + 6x + 8=0x2 – 8x + 16 = 02. Find the points of intersection with the x axis fory=x2 – 14x + 48and sketch this function

SG
Answered by Shannon G. Maths tutor

4751 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand the brackets in the following expression and indicate what the graph would look like: y=(5x+1)(2x-3)


Work out the value of n, the value of A & the value of B (question given below in correct subscript)


Solve algebraically the simultaneous equations x^2 + y^2 = 25 and y − 2x = 5 (5 marks)


Given point A: (5,9), point B: (d,15) and the gradient of line AB is 3... what is the value of d?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning