How do I find the solution of the simultaneous equations x+3y=7 and 5x+2y=8

By looking at both equations you spot that the 'x' in the first equation has coefficient equal to 1, so it would be quite convenient to make 'x' the subject of the first equation and then substitute what 'x' is equal to in the second equation and multiply it by 5. So, x=7-3y therefore 5x=35-15y, and putting this term in the second equation we obtain 35-15y+2y=8, making 'y' the subject we obtain 13y=27 so y=27/13. Finally, substitute this value of 'y' in the first original equation and obtain the value of 'x'.

NB
Answered by Nicola B. Maths tutor

5163 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The point A lies on the curve with equation y = x^(1/2). The tangent to this curve at A is parallel to the line 3y-2x=1. Find an equation of this tangent at A. (PP JUNE 2015 AQA)  


Evaluate the indefinite integral when the integrand function is tan(x).


At each point P of a curve for which x > 0 the tangent cuts the y-axis at T, and N is the foot of the perpendicular from P to the y-axis. If T is always 1 unit below N and the curve passes through the point (1,0), find the Cartesian equation of the curve.


Factorise the following: 5a^3b^5-4ab^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning