How do I find the solution of the simultaneous equations x+3y=7 and 5x+2y=8

By looking at both equations you spot that the 'x' in the first equation has coefficient equal to 1, so it would be quite convenient to make 'x' the subject of the first equation and then substitute what 'x' is equal to in the second equation and multiply it by 5. So, x=7-3y therefore 5x=35-15y, and putting this term in the second equation we obtain 35-15y+2y=8, making 'y' the subject we obtain 13y=27 so y=27/13. Finally, substitute this value of 'y' in the first original equation and obtain the value of 'x'.

NB
Answered by Nicola B. Maths tutor

4923 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A and B have coordinates (2,3) and (5,15), respectively. Together they form line l. Find the equation for the line r that goes through C(7,-2) and is perpendicular to l. Give the answer in the format of y=mx+b


Express cos2x in the form a*cos^2(x) + b and hence show that the integral of cos^2(x) between 0 and pi/2 is equal to pi/a.


What does it mean when I get a negative value when I do a definite integral?


Find the stationary point of the curve y = -2x^2 + 4x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning