How do I find the solution of the simultaneous equations x+3y=7 and 5x+2y=8

By looking at both equations you spot that the 'x' in the first equation has coefficient equal to 1, so it would be quite convenient to make 'x' the subject of the first equation and then substitute what 'x' is equal to in the second equation and multiply it by 5. So, x=7-3y therefore 5x=35-15y, and putting this term in the second equation we obtain 35-15y+2y=8, making 'y' the subject we obtain 13y=27 so y=27/13. Finally, substitute this value of 'y' in the first original equation and obtain the value of 'x'.

NB
Answered by Nicola B. Maths tutor

4768 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I'm supposed to calculate the differential of f(x)= sin(x)*ln(x)*(x-4)^2 using the product rule. I know what the product rule is but I can't split this into two bits that are easy to differentiate. How do I do it?


Given f(x) = 7(e^2x) * (sin(3x)), find f'(x)


How can I derive an equation to find the sum of an arithmetic sequence?


The height x metres, of a column of water in a fountain display satisfies the differential equation dx/dt = 8sin(2t)/(3sqrt(x)), where t is the time in seconds after the display begins. (a) Solve the differential equation, given that x(0)=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning