How do I find the solution of the simultaneous equations x+3y=7 and 5x+2y=8

By looking at both equations you spot that the 'x' in the first equation has coefficient equal to 1, so it would be quite convenient to make 'x' the subject of the first equation and then substitute what 'x' is equal to in the second equation and multiply it by 5. So, x=7-3y therefore 5x=35-15y, and putting this term in the second equation we obtain 35-15y+2y=8, making 'y' the subject we obtain 13y=27 so y=27/13. Finally, substitute this value of 'y' in the first original equation and obtain the value of 'x'.

NB
Answered by Nicola B. Maths tutor

5159 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C is mapped by the equation ( 1+x)(4-x). The curve intersects the x-axis at x = –1 and x = 4. A region R is bounded by C and the x-axis. Use calculus to find the exact area of R.


Rewrite ... logF=logG+logH−log(1/M)−2*logR ... in the form F=... using laws of logarithms


How do you find the minimum of the equation sin^2(x) + 4sin(x)?


What is the value of sin(theta), cos(theta), tan(theta) where theta = 0, 30, 45, 60, 90


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning