"Solve cos(3x +20) = 0.6 for 0 < x < 360" - why are there more than one solution, and how do I find all of them?

The important part of this question is to really understand what the cosine function looks like, many students will use their calculators to find arccos(0.6) = 53.13 degrees, but not find the other solutions to the problem, eg: arcos (0.6) = 53.13, 306.37, 413.13 and so on.

Many students will therefore arrive at 53.13 = 3x+20 as the only solution and therefore 33.13 = 3x and finally x = 11.04 as the only solution, when in fact there are many.

Therefore it is always useful to draw a graph of the cosine function and demonstrate why there are multilpe solutions. We then need to know how many of the solutions will fall within the condition 0 < x <360, as a trick, we consider 0 < 3x < 1080 and then 20 < 3x + 20 < 1100. From this, we infer that any value of arccos(0.6) which falls between 20 and 1100 will be a solution to the problem.

Eg: cos(773.13) = 0.6     therefore letting 773.13 = 3x+20 we solve for x and get x = 251.04.

MF
Answered by Martyn F. Maths tutor

5052 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A geometric progression has first term 3 and second term -6. State the value of the common ratio.


Differentiate The Following function


How do one tailed and two tailed hypothesis tests differ


Find the derivative of the following function with respect to x. y = 5e^x−2xsin(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences