Integrate x*cos(x)

As there are 2 x terms in the integral we will use integration by parts. Remember;  ∫u*(dv/dx)dx =  uv -  ∫v*(du/dx)dx (found by integrating the product rule). From xcos(x) we need to decide which x term will be u and which will be dv/dx. The reason the origional questoin is hard to integrate is due to it having 2 x terms, using the equation ∫u*(dv/dx)dx =  uv -  ∫v*(du/dx)dx gives us the integral  ∫v*(du/dx)dx, by picking the u and dv/dx terms correctly we can ensure this integral has only one x term. We therefor want the u term to integrate to a non-x term, so, let u=x and dv/dx = cos(x).

Now we can calculate the du/dx and v terms, firstly du/dx= 1 ( using the general rule u = axb, du/dx = (a*b)xb-1 ). And secondly our v term, found by integrating dv/dx = cos(x), hence v = sin(x) (as we know sin(x) differentiates to cos(x) ). 

Finally we can sub into  ∫u*(dv/dx)dx =  uv -  ∫v*(du/dx)dx to get  ∫xsinxdx = xsin(x) - ∫sin(x)*1 ( ∫sin(x)*1 simplifies to  ∫sin(x) ), completing the integral ∫sin(x) = -cos(x) the equation becomes  ∫xsinxdx= xsin(x) - - cos(x), which simplifies to  ∫xsinxdx = xsin(x) + cos(x).

RW
Answered by Rebecca W. Maths tutor

8315 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the equation 5sin(x) = 1 + 2 [cos(x)]^2 can be written in the form 2[sin(x)]^2 + 5 sin(x)-3=0


Write 5cos(theta) – 2sin(theta) in the form Rcos(theta + alpha), where R and alpha are constants, R > 0 and 0 <=alpha < 2 π Give the exact value of R and give the value of alpha in radians to 3 decimal places.


Given that f(x) = x^2 (3x - 1)^(1/2) find f'(x)


How do I know which is the null hypothesis, and which is the alternative hypothesis?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning