Find the gradient of a straight line with the points P(5,3) and Q(8,12)

First we draw a picture, to visually see what the question is asking. A simple set of coordinate-axes and notches so we can accurately put our point P and Q, though being accurate isn't important it will give a good idea of what kind of numbers we are looking for. Now the gradient represents 'for every step x along, we go y steps up' so we want to divide dy (the differnce in the y values) by dx (the differnce in the x values). That is to say dy/dx=(12-3)/(8-5)=9/3=3. This is the answer.

AG
Answered by Alexander G. Maths tutor

3672 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = x^2-2x-3 at x=-1


Point P on the curve, x = 2tan( y+ π/12), has a y-coordinate of π/4. Find an equation for the normal to the curve at P.


integrate (2x^4 - 4/sqrt(x) + 3)dx


Find the all the angles of a triangle with side lengths of 8cm, 11cm and 11cm.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning