Find the gradient of a straight line with the points P(5,3) and Q(8,12)

First we draw a picture, to visually see what the question is asking. A simple set of coordinate-axes and notches so we can accurately put our point P and Q, though being accurate isn't important it will give a good idea of what kind of numbers we are looking for. Now the gradient represents 'for every step x along, we go y steps up' so we want to divide dy (the differnce in the y values) by dx (the differnce in the x values). That is to say dy/dx=(12-3)/(8-5)=9/3=3. This is the answer.

AG
Answered by Alexander G. Maths tutor

3575 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the x co-ordinate of stationary point of the graph y=5x^3 +3x


How do I solve equations with modulus functions on both sides?


Find the set of values for x for which x^2 - 9x <= 36


Integrate (x)(e^x) with respect to x and then integrate (x)(e^x) with respect to y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences