Integrate the expression cos^2(x).

This is a common question in C4 and the trick used to solve it is often used in sub-sections to full questions.

To solve it, we must simplify the expression in terms of cos(2x) using two trigonometric identities: "cos(2x) = cos2x - sin2x" and "sin2x + cos2x = 1". The result of these two expressions gives us "cos2x = 0.5cos(2x) + 0.5". We can now obtain the final solution by integrating this expression knowing that cos(x) integrates to sin(x), giving "0.25sin(2x) + 0.5x + c". The c term, representing a constant, is essential in the answer as we have not defined the integral between any limits.

RT
Answered by Rohan T. Maths tutor

5252 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the indefinite integral of cos^2x?


How do you take the derivative of a^x ?


The velocity of a moving body is given by an equation v = 30 - 6t, where v - velocity in m/s, t - time in s. A) What is the acceleration a in m/s^2? B) Find the expression for the displacement s in terms of t given the initial displacement s(0)=10 m.


A curve is defined for x>0 as y = 9 - 6x^2 - 12x^4 . a) Find dy/dx. b) Hence find the coordinates of any stationary points on the curve and classify them.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning