Answers>Maths>IB>Article

How does the right angle triangle definition of sine, cosine and tangent relate to their graphs as a function of angle and to Euler's formula?

To answer this question we must understand the representation of the unit circle firstly in real coordinates and secondly in the complex plane. The unit circle is just the drawing of a circle of radius 1 in the xy-plane, represented by points (x,y) on the function x2 + y2 = 1. We can draw a right angle triangle with the right-hand corner lying on its circumferences, which indicates that the hypotenuse has length 1. If we wanted to find the length of the Opposite or Adjacent sides we would have to use the SOH CAH TOA mnemonic, which is the definition we use for right angle triangles: this tells us that sin(\theta) = y which is the length along the y-axis and cos(\theta) = x which is the length along the x-axis. (Sanity check: this shows us that the Pythagorean theorem a2 + b2 = c2 holds as expected!) This works in the top-right quadrant but not in the others. If we want to work with angles beyond those between \pi/2 and 0 but all the way to +- infinity, then we extend the definition of the trig functions such that sine is the y-coord of where the triangle crosses the unit circle and cosine respectively the x-coord. Tangent follows. If you now draw a graph of sin(\theta) by tracing the y-coord as you change angle you obtain the familiar sine wave: similarly for cosine and tangent!

Now let's go one step further and draw the unit circle in the complex plane ( replace y by Im(z) and x by Re(z)). See that the value z is determined by the x-coordinate and y-coordinate and since z = x+iy, just as before where cos(\theta) = x and sin(\theta) = y we therefore have that our complex number z = cos(\theta) + i sin(\theta). By peforming the series expansion of these functions and the complex exponential ei \theta we see that an arbitrary complex number z with modulus=1 can be represented by the formula ei \theta = cos(\theta) + i sin(\theta). But crucially this all comes down to the unit circle!

CD
Answered by Caroline D. Maths tutor

3411 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Show that the following system of equations has an infinite number of solutions. x+y+2z = -2; 3x-y+14z=6; x+2y=-5


Solve the equation sec^2 x + 2tanx = 0 , 0 ≤ x ≤ 2π, question from HL Maths exam May 2017 TZ1 P1


Three girls and four boys are seated randomly on a straight bench. Find the probability that the girls sit together and the boys sit together.


(a) Find the set of values of k that satisfy the inequality k^2 - k - 12 < 0. (b) We have a triangle ABC, of lengths AC = 4 and BC = 2. Given that cos B < 1/4 , find the range of possible values for AB:


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning