Differentiate the equation y = (1+x^2)^3 with respect to (w.r.t.) x using the chain rule. (Find dy/dx)

For this example it would be better to use a dummy variable (a variable just to help with solving the equation but isn't a part of the final answer). Let us say our dummy variable, t = 1+x^2. So, substituting t into the equation, we now have y = t^3. Let us differentiate y w.r.t. t, dy/dt = 3t^2 and let us differentiate t w.r.t. x, dt/dx = 2x. So now, we have two new equations, dy/dt and dt/dx. If we multiply these two together using the chain rule - dy/dt * dt/dx = dy/dx (which is what we are trying to find), we end up with dy/dx = 3t^2 * 2x. Substitute x back into the equation dy/dx = 3(1+x^2)^2 * 2x = 6x(1+x^2)^2. (FINAL ANSWER)

PA
Answered by Paolo A. Maths tutor

5878 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve, giving your answer to 3 s.f. : 2^(2x) - 6(2^(x) ) + 5 = 0


Using the substitution u = 2 + √(2x + 1), or other suitable substitutions, find the exact value of 4 0 1 ∫ 2 (2 1) +√ +x dx giving your answer in the form A + 2ln B, where A is an integer and B is a positive constant


The random variable J has a Poisson distribution with mean 4. Find P(J>2)


differentiate y=8x^3 - 4*x^(1/2) + (3x^2 + 2)/x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences