Show that cosec(2x) + cot(2x) = cot(x)

cosec(2x) + cot(2x)

CONVERT ALL COSEC/COT/SEC FUNCTIONS INTO FUNCTIONS USING SIN/TAN/COS

= 1 / (sin2x) + cos(2x) / sin(2x)

COMBINE THE TWO FRACTIONS INTO ONE

= [1+cos(2x)] / [sin(2x)]

USE COS AND SIN DOUBLE ANGLE FORMULA

a) COS(2X) = 2COS2(X) - 1

b) SIN(2X) = 2SIN(X)COS(X)

= [1+2cos2(x)-1] / [2sin(x)cos(x)]

COLLECT LIKE TERMS

= [2cos2(x)] / [2sin(x)cos(x)]

DIVIDE BY COS(X) ON BOTH BOTTOM AND TOP OF FRACTION

= [cos(x)] / [sin(x)]

USE IDENTITY [SIN(X)] / [COS(X)] = TAN(X)

= [1] / [tan(x)]

USE IDENTITY [1] / [TAN(X)] = COT(X)

= cot(x)

DK
Answered by Divya K. Maths tutor

71514 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate: y=12x(2x+1)+1/x


Differentiate y=(x^2+1)(e^-x)


Find the area encompassed by y=(3-x)x^2 and y=x(4-x) between x=0 and x=2.


(1.) f(x)=x^3+3x^2-2x+15. (a.) find the differential of f(x) (b.) hence find the gradient of f(x) when x=6 (c.) is f(x) increasing or decreasing at this point?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning