Find the derivative of the function f:(0,oo)->R, f(x)=x^x.

The domain of the function allows us to write f(x)=xx  as f(x)=eln(x^x)=ex ln(x) (since ln(x) is defined on (0,oo) only). Using the standard derivative rules we get f'(x)=ex ln(x) (x ln(x))'=ex ln(x)(1+ln(x))=xx (1+ln(x)).

AR
Answered by Andrei R. Maths tutor

3117 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the volume obtained when rotating the curve y=x^2 360 degrees around the x axis for 0<x<2


Why is the derivative of x^2 equal to 2x?


I already done this.


Integral between 0 and pi/2 of cos(x)sin^2(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning