Find the derivative of the function f:(0,oo)->R, f(x)=x^x.

The domain of the function allows us to write f(x)=xx  as f(x)=eln(x^x)=ex ln(x) (since ln(x) is defined on (0,oo) only). Using the standard derivative rules we get f'(x)=ex ln(x) (x ln(x))'=ex ln(x)(1+ln(x))=xx (1+ln(x)).

AR
Answered by Andrei R. Maths tutor

2805 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to solve the absolute-value inequalities?


Differentiate y=(sin(x))^(2)


The curve C has the equation y=3x/(9+x^2 ) (a) Find the turning points of the curve C (b) Using the fact that (d^2 y)/(dx^2 )=(6x(x^2-27))/(x^2+9)^3 or otherwise, classify the nature of each turning point of C


Find the integral of (2(3x+2))/(3x^2+4x+9).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences