Find the derivative of the function f:(0,oo)->R, f(x)=x^x.

The domain of the function allows us to write f(x)=xx  as f(x)=eln(x^x)=ex ln(x) (since ln(x) is defined on (0,oo) only). Using the standard derivative rules we get f'(x)=ex ln(x) (x ln(x))'=ex ln(x)(1+ln(x))=xx (1+ln(x)).

AR
Answered by Andrei R. Maths tutor

2840 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (x^2)(e^x) with respect to x


How do you form a Cartesian equation from two parametric equations?


Integrate by parts the following function: ln(x)/x^3


(x-4)^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences