A curve has equation (x+y)^2=x*y^2, find the gradient of the curve at a point where x=1

  1. Differentiating left hand side: 2(x+y)(1+dy/dx) from the chain rule 2. Differentiating right hand side: y2+2xy(dy/dx) from the product rule 3. Equating sides and taking out factors of dy/dx to rearrange for dy/dx: dy/dx=[y2-2(x+y)]/[2(x+y)-2xy] 4. Substitute x=1 into original expression and solving for y (i.e. solving (1+y)2=y2) gives y=-1/2 5. Substituting x=1 and y=-1/2 into the expression for dy/dx gives dy/dx=-3/8
PK
Answered by Peter K. Maths tutor

4137 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

At what point(s) do lines y = x^2 - 5x - 14 and y = 3x + 2 intersect? Write your answer in surd form


It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5


find the exact solution to the following equation: ln(x) + ln(3) = ln(6)


7^6 x 7^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning