A curve has equation (x+y)^2=x*y^2, find the gradient of the curve at a point where x=1

  1. Differentiating left hand side: 2(x+y)(1+dy/dx) from the chain rule 2. Differentiating right hand side: y2+2xy(dy/dx) from the product rule 3. Equating sides and taking out factors of dy/dx to rearrange for dy/dx: dy/dx=[y2-2(x+y)]/[2(x+y)-2xy] 4. Substitute x=1 into original expression and solving for y (i.e. solving (1+y)2=y2) gives y=-1/2 5. Substituting x=1 and y=-1/2 into the expression for dy/dx gives dy/dx=-3/8
PK
Answered by Peter K. Maths tutor

4403 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The polynomial p(x) is given by p(x) = x^3 – 5x^2 – 8x + 48 (a) (i) Use the Factor Theorem to show that x + 3 is a factor of p(x). [2 marks] (ii) Express p(x) as a product of three linear factors. [3 marks]


How would I differentiate a function of the form y=(f(x))^n?


How do you factorise a quadratic equation?


What is the chain rule? when do I have to use it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning