Derive an expression for the time taken, (t) for a test mass to fall to the ground from a height (h) in a uniform gravitational field (g = 9.81 ms^-2)

We first build an intuition for exactly what acceleration is and what we expect to happen. In the uniform gravitational field approximation, we assume h to be much less than the radius of the Earth. Therefore, the higher we drop the test mass from, the larger the velocity of the test mass when it hits the ground at h = 0. Derivation: We take velocity = dh/dt = acceleration(g)*time(t), and then use the required calculus to integrate to find the expression: h = (1/2)gt^2 . We finally tidy this up by rearranging using basic algebra to express t as a function of h t(h) = SQRT(2h/g) (I would then very likely ask to plot that function so that the intuitions developed at the start can be solidified and we can gain some confidence in the use of calculus to solve real problems.) 

CB
Answered by Charlie B. Physics tutor

1702 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the Strong Nuclear Force?


A car of mass m is travelling at a speed v around a circular track of radius r banked at an angle θ. (a) What is the centripetal acceleration of the car? (b) What is the normal force acting on the car? (c) If θ = 45°, r = 1 km what is the maximum speed?


2 identical trolleys of mass M(one is loaded with 2 blocks of mass m) are on a ramp inclined at 35° and are connected by a wire that passes around a pulley at the top of the ramp. They are released and accelerate accordingly. Show that a=(mgsin35°)/(M+m).


How does the photoelectric effect actually show that light is made up of particles?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences