Differentiate: y = 2 ^ x

y = 2 ^ x

take ln of both sides

ln( y) = ln (2 ^ x)

using the log rules we can bring the power of x down in front of the ln

ln( y ) = x*ln(2)

differentiate both sides wrt x

( 1 / y ) * dy / dx = ln(2)

dy / dx = y*ln(2)   ==> rememer  y = 2 ^ x

dy / dx = ln(2) * 2 ^ x

SH
Answered by Shantu H. Maths tutor

52910 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Finding the tangent of an equation using implicit differentiation


Prove that (sinx + cosx)^2 = 1 + 2sinxcosx


Express 9^(3x+1) in the form 3^y, giving "y" in the form "ax+b" where "a" and "b" are constants.


Given that y=x^3 +2x^2, find dy/dx . Hence find the x-coordinates of the two points on the curve where the gradient is 4.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences