Differentiate: y = 2 ^ x

y = 2 ^ x

take ln of both sides

ln( y) = ln (2 ^ x)

using the log rules we can bring the power of x down in front of the ln

ln( y ) = x*ln(2)

differentiate both sides wrt x

( 1 / y ) * dy / dx = ln(2)

dy / dx = y*ln(2)   ==> rememer  y = 2 ^ x

dy / dx = ln(2) * 2 ^ x

SH
Answered by Shantu H. Maths tutor

54344 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By first expanding the brackets, differentiate the equation: y=(4x^4 + 3x)(2x^2 - 9)


What is an easy way to remember how sin(x) and cos(x) are differentiated and integrated?


y = 4x / (x^2 + 5). Find dy/dx.


The gradient of the curve at point (x,y) is given by dy/dx = [7 sqrt(x^5)] -4. where x>0. Find the equation of the curve given that the curve passes through the point 1,3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning