Integrate | x^7 (ln x)^2 dx ( | used in place of sigma throughout question)

Start the integration by parts process

|udv = uv - |vdu

  u = (ln x)2             dv = x7 dx

du = 2(ln x)/x dx         v = 1/8 x8

= 1/8 x8 (ln x)2 - | 1/4(ln x)x7 dx

= 1/8 x8 (ln x)2 -1/4 | x7(ln x) dx

Repeat the integration by parts method on the integral |x7(ln x) dx

u=(ln x)            dv = x7 dx

du = 1/x dx         v = 1/8 x8

= 1/8 (ln x) x8 - 1/8 | x7 dx

= 1/8 (ln x) x8 - 1/64 x8

Simplify the answer (remebering to add the constant of integration).

= 1/8 x8 (ln x)2 -1/4 (1/8 (ln x) x8 - 1/64 x)

= 1/8 x8 (ln x)2 -1/32 (ln x) x8 + 1/256 x8 + C

RD
Answered by Rowan D. Maths tutor

8194 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I find the approximate area enclosed by the expression e^x*sin(x)*x^3 on an infinite scale?


I don't understand why the function "f(x)=x^2 for all real values of x" has no inverse. Isn't sqrt(x) the inverse?


What is the chain rule? when do I have to use it?


An 1kg ball collides normally with a fixed vertical wall. Its incoming speed is 8 m/s and its speed after the collision is 4 m/s . Calculate the change in momentum of the particle. If the collision lasts 0.5 s calculate the impact force.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning