Solve the simultaneous equations: 4x+y=25 and x-3y=16

Lets first give the equations names.

4x+y=25 (A)

x-3y=16 (B)

We want to get the equations so that they have either the same number of x's or same number of y's. So let's multiply equation (A) by three so that both equations have 3y in them.

(A) x 3: 12x+3y=75

STOP (Same signs, Take-away. Opposite signs, Plus).

So our 3y's have opposite signs [(A) is +3y and (B) is -3y)] so we need to add these equations together to eliminate all of the y's.

(A) + (B) gives 13x=91

x=91/13, So x=7

We now need to subsitute our value for x into one of the equations to find y.

So subbing x=7 into equation (B) gives:

7-3y=16

7-16=3y

-9=3y

y=-3

So our solution is x=7, y-3.

We can now check our solution by subbing these values into the other equation. So subbing x=7 and y=-3 into (A) gives 4(7)+(-3)=25. This means our solution for the simultaneous equation is correct because these values also work for equation (A).

MD
Answered by Michael D. Maths tutor

9469 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I multiply and divide indices?


If a=2 and b=3 , find the value of 2(a−b)+3(a+b)


These are the selling prices of 5 houses in 2007: £145 000, £170 000, £215 000, £90 000, £180 000 (a) Work out the mean selling price.


write 2/(3+root(5)) in the form a + b*root(5), where a and b are rational numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning