Factorise the expression: 2x^2 + 17x + 21

There are several ways to factorise this quadratic expression, but the best way in my opinon is:

  1. Take the constant in front of the x^2 and multiply it by the standalone constant (i.e. multiply 2 by 21, which gives 42). The constant in front of x is 17. This tells us that we need to find 2 numbers whose product is 42 and sum is 17.

  2. After trail and error, we know that these two numbers will be 14 and 3. Hence, the middle term (17x) will be split into these two terms (i.e. 13x and 4x), giving us 2x^2 + 14x + 3x + 21 . 

  3. Factorising these individually gives us: 2x(x+7) + 3(x+7) and final answer comes to (2x + 3) ( x + 7) 

TM
Answered by Tushar M. Maths tutor

8945 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of line L is y = 3x - 2 and the equation of line Q is 3y - 9x + 5 = 0, show these two lines are parallel


Solve the simultaneous equations 2x - 3y = 7 and 3x + 4y = 2. Do not use trail and improvement.


A right-angled triangle has base 10cm and height 4cm. What is the area of the triangle?


Solve the equation to find the value of t. (5t+3)/4=1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning