Given that 2-3i is a root to the equation z^3+pz^2+qz-13p=0, show that p=-2 and q=5.

Substitute 2-3i into equation using part i (2-3i)3=-46-9i.  -46-9i+p(-5-12i)+q(2-3i)-13p=0. -46-18p+2q-9i-12pi-3iq=0. Real: -46-18p+2q=0 and Imaginary: -9-12p-3q=0. p=-2, q=5

WN
Answered by William N. Maths tutor

11154 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a logarithm?


The line AB has equation 5x + 3y + 3 = 0 . (a) The line AB is parallel to the line with equation y = mx + 7 . Find the value of m. [2 marks] (b) The line AB intersects the line with equation 3x -2y + 17 = 0 at the point B. Find the coordinates of B.


OCR C2 2015 Question 8: (a) Use logarithms to solve the equation 2^(n-3) = 18,000 , giving your answer correct to 3 significant figures. (b) Solve the simultaneous equations log2(x) + log2(y) = 8 & log2(x^2/y) = 7.


Find the area encompassed by y=(3-x)x^2 and y=x(4-x) between x=0 and x=2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning