Given that y > 0, find ∫((3y - 4)/y(3y + 2)) dy (taken from the Edexcel C4 2016 paper)

This can't be integrated directly as y appears in the numerator and denominator. This is an indication that you must integrate by parts. A/y + B/(3y+2) = (3y - 4)/y(3y + 2) A and B must be found. Multiply by the denominators to get A and B on their own. All denominators should disappear. A(3y + 2) + B(y) = 3y - 4 To find A and B, find the value of y that would make the value of the bracket 0. This will cancel out A or B. Here, it's y = 0 and y = -2/3. Plug each value into the equation. y = 0                   y = -2 / 3 2A = -4                 -2B / 3 = -6 A = -2                  B = 9 Now that A and B have been found, the integral looks like ∫(9 / 3y + 2) - (2 / y) dy. The equation can now be integrated, giving the answer 27ln(3y + 2) - 2ln(y) (+c)

SS
Answered by Saskia S. Maths tutor

11548 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

g(x) = x/(x+3) + 3(2x+1)/(x^2 +x - 6) a)Show that g(x) =(x+1)/(x-2), x>3 b)Find the range of g c)Find the exact value of a for which g(a)=g^(-1)(a).


Find the derivative, dy/dx, of y = 8xcos(3x).


Factorise x^3+3x^2-x-3


Given that y = 5x^3 + 7x + 3, find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning