Find the first derivative of y=2^x

There is an initial subtle difficulty to this question, and it highlights understanding of the relationship between natural logarithms and the exponential function. One of the ways to solve this question, is to express y=2^x as y=e^(xln(2)), an entirely equivalent form. This is much easier to differentiate using the chain rule. The reason I chose this question is this is not the only way to find the derivative. If y=2^x ln(y)=ln(2^x) ln(y)=xln(2) differentiating implicitly dy/dx (1/y) = ln(2) rearranging dy/dx = yln(2) substitution of y=2^x dy/dx=ln(2)2^x I find this to be the most inspiring thing when explaining and learning mathematics, since there are so many different pathways to find the same answer, some with more elegance than others.

AM
Answered by Alex M. Maths tutor

3998 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the circumference x^2 - 2x + y^2 = 3, find the position of the center P and the value of the Radius. Then find the intercepts with the y axis and the tangent to the circumference at the positive y intercept.


How do you differentiate a function comprised of two functions multiplied together?


Find the equation of the tangent to the curve y = (5x+4)/(3x -8) at the point (2, -7)


using integration by parts evaluate the integral of xsinx between x=0 and x =pi/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning