Find the equation of the tangent to the curve y = (2x -3)^3 at the point (1, - 1), giving your answer in the form y = mx + c.

y = (2x -3)^3

y = (2x)^3 + 3.((2x)^2)(-3) + 3.(2x).(-3)^2 + (-3)^2 using Pascal's Triangle.

y = 8x^3 - 36x^2 + 54x - 27 

dy/dx = 24x^2 - 72x + 54

at point (1,-1); dy/dx = 24 -72 + 54 = 6

Therefore tangent line is of the form y=6x + c

at point (1,-1); -1=6.1 + c

Therefore c = -7 and tangent line is y = 6x - 7.

RS
Answered by Robert S. Maths tutor

12256 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider the unit hyperbola, whose equation is given by x^2 - y^2 = 1. We denote the origin, (0, 0) by O. Choose any point P on the curve, and label its reflection in the x axis P'. Show that the line OP and the tangent line to P' meet at a right angle.


Solve the inequality x^2 - 9 > 0


The curve C has equation y=(2x-3)^5, the point P lies on C and has coordinates (w, – 32), find (a) the value of w and (b) the equation of the tangent to C at the point P in the form y=mx+c , where m and c are constants.


The circle C has centre (2,1) and radius 10. The point A(10,7) lies on the circle. Find the equation of the tangent to C at A and give it in the form 0 =ay + bx + c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences