The equation 2x^2 + 2kx + (k + 2) = 0, where k is a constant, has two distinct real roots. Show that k satisfies k^2 – 2k – 4 > 0

Two distinct real roots means that we can use b^2-4ac>0 relationship for any ax^2+bx+c equation. Apply the above gives, 4k^2 - 42(k+2)>0 Simplifying gives, k^2 - 2k -4 >0

AT
Answered by Andreas T. Maths tutor

11817 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the turning points of the equation y=4x^3-9x^2+6x?


How can we remember the difference between differentiation and integration?


How do you integrate the natural logarithm ln(x)?


Find d/dx (ln(2x^3+x+8))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning