Find the derivation of (sinx)(e^2x)

Because there are two forms of x , the form uv'+vu' must be used.

If y=sinx , dy/dx=cosx 

If y=e^kx , dy/dx=ke^kx

Therefore dy/dx=(sinx)(2e^2x)+(e^2x)(cosx)

EB
Answered by Eric B. Maths tutor

4941 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For a curve of equation 2ye^-3x -x = 4, find dy/dx


Differentiate the following equation with respect to x; sinx + 3x^2 - 2.


Prove, using the product rule that, the derivative of x^{n} is nx^{n-1} where n is a natural number. What if n is an integer or n is rational?


given y=(1+x)^2, find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning