Find the derivation of (sinx)(e^2x)

Because there are two forms of x , the form uv'+vu' must be used.

If y=sinx , dy/dx=cosx 

If y=e^kx , dy/dx=ke^kx

Therefore dy/dx=(sinx)(2e^2x)+(e^2x)(cosx)

EB
Answered by Eric B. Maths tutor

4672 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation ye ^(–2x) = 2x + y^2 . Find dy/dx in terms of x and y.


(Core 2) Show that the region bounded by the curve y = 7x+ 6 - (1/x^2), the x axis and the lines x = 1 and x = 2 equals 16


Express cos(2x) in the form acos^2(x) + b, where a and b are constants.


What is a limit?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning