What happens to the rate of an enzyme-catalysed reaction when temperature increases? And when pH changes?

As temperature increases, the molecules involved in the reaction gain kinetic energy, increasing the chances of collision between the substrate molecules and the active sites of the enzymes, a step that is necessary for catalysis. Therefore, the rate of an enzyme-catalysed reaction increases with temperature, up to an optimum temperature. However, if the temperature continues to increase past this point, the enzymes become denatured and lose their function as a catalyst, thus the reaction stops.

Each enzyme has an optimum pH at which the maximum rate of the reaction is reached, and a narrow interval of tolerance within which the reaction occurs at a lower rate. Enzymes are very sensitive to pH changes, since they cause variation to the superficial charges at their active sites, modifying their shape and difficulting interation with the substrates. Therefore, a change in pH will reduce the rate of an enzyme-catalysed reaction and may cause it to stop if the new pH doesn't fall within the interval at which the enzyme can function.

MD
Answered by Maria D. Biology tutor

11571 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

What are the limiting factors of Photosynthsis


Can you explain the difference between simple and facilitated diffusion?


What are the main differences between RNA and DNA molecules?


How can one remember the function and the anatomy of the cardiac valves?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning